Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Organ-on-a-Chip and Body-on-a-Chip: In Vitro Systems Mimicking In Vivo Functions "Track A"

Danilo Tagle's Biography

Danilo Tagle, Associate Director For Special Initiatives, Office of the Director, National Center for Advancing Translational Sciences at the NIH (NCATS)

Dan Tagle is associate director for special initiatives at NCATS. He also recently served as acting deputy director of NCATS and has served as acting director of the NCATS Office of Grants Management and Scientific Review and as executive secretary to the NCATS Advisory Council and Cures Acceleration Network Review Board. Prior to joining NCATS, Tagle was a program director for neurogenetics at the National Institute of Neurological Disorders and Stroke (NINDS), where he was involved in developing programs concerning genomics-based approaches for basic and translational research in inherited brain disorders.

Prior to joining NINDS in 2001, Tagle was an investigator and section head of molecular neurogenetics at the National Human Genome Research Institute and has been involved in the highly collaborative effort toward the positional cloning of genes for Huntington’s disease, ataxia-telangiectasia and Niemann-Pick disease type C. He has served on numerous committees and advisory boards, including the editorial boards of the journals Gene and the International Journal of Biotechnology.

Tagle obtained his Ph.D. in molecular biology and genetics from Wayne State University School of Medicine in 1990. He was an NIH National Research Service Award postdoctoral fellow in human genetics in the laboratory of Francis S. Collins, M.D., Ph.D., at the University of Michigan. Tagle has authored more than 150 scientific publications and has garnered numerous awards and patents.

Danilo Tagle Image

3-D Bioprinting and Organ on Chips for Drug Discovery and Development

Thursday, 4 October 2018 at 17:30

Add to Calendar ▼2018-10-04 17:30:002018-10-04 18:30:00Europe/London3-D Bioprinting and Organ on Chips for Drug Discovery and

About 90 percent of potential new drugs fail in clinical trials because they are found to be ineffective or due to adverse events. This failure happens in large part because 2D in vitro assays, and animal models used during the drug discovery and development process do not accurately predict human physiological response. To address this critical for better predictive tools, NCATS is supporting programs for 3-D bioprinting of human cells in microplate format for drug screening and discovery, and organs on chips that can be used for safety and efficacy assessments of the candidate drugs.

Add to Calendar ▼2018-10-04 00:00:002018-10-05 00:00:00Europe/LondonOrgan-on-a-Chip and Body-on-a-Chip: In Vitro Systems Mimicking In Vivo Functions "Track A"