Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Lab-on-a-Chip and Microfluidics 2021

Lydia Sohn's Biography

Lydia Sohn, Almy C. Maynard and Agnes Offield Maynard Chair in Mechanical Engineering, University of California-Berkeley

Lydia L. Sohn received her A.B. (Chemistry and Physics, 1988), M.S. (Physics, 1990), and Ph.D. (Physics, 1992) from Harvard University. She was an NSF/NATO postdoc at Delft University of Technology and a postdoc at AT&T Bell Laboratories (1993-1995). Sohn was an Assistant Professor of Physics at Princeton University prior to joining the Mechanical Engineering Dept. at UC Berkeley in 20013. Her work focuses on developing quantitative techniques to probe single cells. Sohn has received numerous awards including the NSF CAREER, Army of Research Young Investigator Award, DuPont Young Professor Award, and a Bakar Fellowship. In 2014, she was one of five winners in the “Identifying Platform Technologies for Advancing Life Sciences Research” competition for her work on Node-Pore Sensing. Most recently, she was elected a Fellow of the American Institute for Medical and Biological Engineering.

Lydia Sohn Image

Node-Pore Sensing: A Versatile Microfluidic Method for Performing Single-Cell Analysis

Tuesday, 14 December 2021 at 08:30

Add to Calendar ▼2021-12-14 08:30:002021-12-14 09:30:00Europe/LondonNode-Pore Sensing: A Versatile Microfluidic Method for Performing Single-Cell AnalysisLab-on-a-Chip and Microfluidics 2021 in Coronado Island, CaliforniaCoronado Island,

We have developed an efficient, label-free method of screening cells for their phenotypic profile, which we call Node-Pore Sensing (NPS).  NPS involves measuring the modulated current pulse caused by a cell transiting a microfluidic channel that has been segmented by a series of inserted nodes.  When segments between the nodes are functionalized with different antibodies corresponding to distinct cell-surface antigens, immuno-phenotyping of single cells can be achieved.  By simply inserting between two nodes a “contraction” channel through which a cell can squeeze, we can simultaneously measure a cell’s size, resistance to deformation, transverse deformation, and ability to recover from deformation.  Finally, replacing the contraction channel with one that is sinusoidal such that a cell undergoes periodic deformation results in measuring a cell’s viscoelastic properties.  In this talk, I will describe the many applications of NPS we are pursuing—from immuno-phenotyping leukemic blasts to distinguishing chronological age groups of primary human mammary epithelial cells to identifying white vs. brown adipocytes—all based on mechanical properties.  I will also describe the development of the next-generation NPS platform which utilizes advanced signal processing algorithms directly encoded in the NPS channels to thus achieve multiplexing.

Add to Calendar ▼2021-12-13 00:00:002021-12-15 00:00:00Europe/LondonLab-on-a-Chip and Microfluidics 2021Lab-on-a-Chip and Microfluidics 2021 in Coronado Island, CaliforniaCoronado Island,