Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Lab-on-a-Chip and Microfluidics Europe 2018

Aleksandr Ovsianikov's Biography

Aleksandr Ovsianikov, Professor, Head of Research Group 3D Printing and Biofabrication, Technische Universität Wien (TU Wien)

Dr. Ovsianikov is a full Professor and a head of the group “3D Printing and Biofabrication” at the TU Wien (Vienna, Austria). His research is dealing with the use of additive manufacturing technologies for tissue engineering and regenerative medicine. Dr. Ovsianikov has background in laser physics and material processing with femtosecond lasers. A particular focus his current research is establishing multiphoton lithography in the domain of biofabrication for engineering of biomimetic 3D cell culture matrices and realization of novel tissue engineering scaffolds. Dr. Ovsianikov was awarded a prestigious Starting Grant in 2012 and a Consolidator Grant in 2017 from the European Research Council (ERC) for projects aimed at these topics. Together with Prof. Mironov and Prof. Yoo he is an editor of a living book project “3D Printing and Biofabrication” published by Springer in cooperation with Tissue Engineering and Regenerative Medicine International Society (TERMIS).

Aleksandr Ovsianikov Image

High Resolution 3D Printing Inside a Chip

Wednesday, 6 June 2018 at 11:30

Add to Calendar ▼2018-06-06 11:30:002018-06-06 12:30:00Europe/LondonHigh Resolution 3D Printing Inside a ChipLab-on-a-Chip and Microfluidics Europe 2018 in Rotterdam, The NetherlandsRotterdam, The

3D printing opens exciting perspectives towards rapid engineering of complex 3D structures for microfluidic applications. In this context, multiphoton lithography (MPL) is an outstanding approach, since photosensitive material formulations and cells are delivered by perfusing the channels, thus enabling 3D printing within already assembled microfluidic chips. The latter aspects implies that different materials, construct geometries and cell types can be tested with the same set of chips without changing their initial design or fabrication process. In addition MPL offers high spatial resolution, unmatched by other 3D printing approaches, and can produce features down to sub-100 nm level directly in the volume of the material, without the necessity to deposit it layer by layer. An increasing portfolio of available materials enables utilization of the versatile capabilities of MPL, from producing complex volumetric 3D structures by means of cross-linking, to creating void patters within hydrogels already containing living cells. In this contribution, our recent progress on MPL for microfluidic applications and the development of according materials will be presented.

Add to Calendar ▼2018-06-05 00:00:002018-06-06 00:00:00Europe/LondonLab-on-a-Chip and Microfluidics Europe 2018Lab-on-a-Chip and Microfluidics Europe 2018 in Rotterdam, The NetherlandsRotterdam, The