Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences The Space Summit 2021

Tim Jamison's Biography



Tim Jamison, Professor, Massachusetts Institute of Technology

Tim Jamison was born in San Jose, CA and grew up in neighboring Los Gatos, CA. He received his undergraduate education at the University of California, Berkeley. A six-month research assistantship at ICI Americas in Richmond, CA under the mentorship of Dr. William G. Haag was his first experience in chemistry research. Upon returning to Berkeley, he joined the laboratory of Prof. Henry Rapoport and conducted undergraduate research in his group for nearly three years, the majority of which was under the tutelage of William D. Lubell (now at the University of Montreal). A Fulbright Scholarship supported ten months of research in Prof. Steven A. Benner’s laboratories at the ETH in Zürich, Switzerland, and thereafter he undertook his PhD studies at Harvard University with Prof. Stuart L. Schreiber. He then moved to the laboratory of Prof. Eric N. Jacobsen at Harvard University, where he was a Damon Runyon-Walter Winchell postdoctoral fellow. In July 1999, he began his independent career at MIT, where his research program focuses on the development of new methods of organic synthesis and their implementation in the total synthesis of natural products.

Tim Jamison Image

On-Demand Synthesis

Friday, 1 October 2021 at 09:45

Add to Calendar ▼2021-10-01 09:45:002021-10-01 10:45:00Europe/LondonOn-Demand SynthesisThe Space Summit 2021 in BostonBostonSELECTBIOenquiries@selectbiosciences.com

Flow chemistry has had–and will continue to have–many significant impacts on the synthesis of organic molecules.  Flow systems can reduce reaction times, increase efficiency, and obviate problems often encountered in scaling up comparable batch processes.  In addition to these important practical advantages, flow chemistry expands the “toolbox” of organic reactions available to scientists engaged in the synthesis of molecules – from small-scale experiments to large-scale production.  These benefits are a direct result of several features of flow synthesis that batch synthesis typically cannot achieve, for example, the ability to control fluid flow precisely, the access to temperature and pressure regimes not usually considered to be practical, and the enhanced safety characteristics of flow chemical systems.  In this lecture we will discuss some of our investigations in this area in the form of case studies.  By enhancing the design rules for organic synthesis and molecular discovery, flow chemistry therefore represents an important conceptual advance in the design and execution of chemical syntheses.  On-demand synthesis embodies these and other exciting opportunities.


Add to Calendar ▼2021-09-30 00:00:002021-10-01 00:00:00Europe/LondonThe Space Summit 2021The Space Summit 2021 in BostonBostonSELECTBIOenquiries@selectbiosciences.com