Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Lab-on-a-Chip, Microfluidics & Microarrays World Congress 2016

Abraham Lee's Biography



Abraham Lee, William J. Link Professor and Chair, University of California-Irvine

Abraham (Abe) P. Lee is the William J. Link Professor and Chair of the Biomedical Engineering (BME) Department with a courtesy appointment in Mechanical and Aerospace Engineering (MAE) at the University of California, Irvine. He is the Director of the NSF I/UCRC “Center for Advanced Design & Manufacturing of Integrated Microfluidics” (CADMIM). Prior to UCI, he was at the National Cancer Institute and a program manager in the Microsystems Technology Office at DARPA (1999-2001). Dr. Lee’s lab focuses on developing active integrated microfluidics and droplet microfluidic platforms. These platforms are applied to point-of-care and molecular diagnostics, “smart” nanomedicine for early detection and treatment, single cell processing and analysis, and tissue engineering and cell-based therapeutics. His research has contributed to the founding of several start-up companies. Dr. Lee serves as an associate editor for the Lab on a Chip journal and he is also an advisor to companies and government agencies. He owns 42 issued US patents and is author of over 100 journals articles. Professor Lee was awarded the 2009 Pioneers of Miniaturization Prize and is an elected fellow of the American Institute of and Medical and Biological Engineering and the American Society of Mechanical Engineers.

Abraham Lee Image

Chip-Scale Microfluidic Physiological Circulation Systems

Tuesday, 27 September 2016 at 17:55

Add to Calendar ▼SELECTBIOenquiries@selectbiosciences.com

There has been a recent surge in the development of microphysiological systems and organ-on-a-chip for drug screening and regenerative medicine.  Over the years, drug screening has mostly been carried out on 2D monolayers in well plates and the drugs are not delivered through blood vessels as in vivo treatments. Through the advancement of microfluidics technologies, we have enabled the automation of biological fluids delivery through physiological vasculature networks that mimic the physiological circulation of the human body.  The critical bottleneck is to engineer the microenvironment for the formation of vascularized 3D tissues and to also pump and perfuse the tissue vascular network for on-chip microcirculation.  This in vitro model system can be used to screen cancer drugs by mimicking the delivery of the drugs through capillary blood vessels.  On the other hand, microfluidics play an important role in the recent advances in liquid biopsy and the ability to specifically isolate and capture rare cells such as circulating tumor cells. These two technologies may go hand-in-hand to connect in vitro screening to in vivo screening with great potential in the development of personalized medicine.

Chip-Scale Microfluidic Physiological Circulation Systems

Tuesday, 27 September 2016 at 17:55

Add to Calendar ▼SELECTBIOenquiries@selectbiosciences.com

There has been a recent surge in the development of microphysiological systems and organ-on-a-chip for drug screening and regenerative medicine.  Over the years, drug screening has mostly been carried out on 2D monolayers in well plates and the drugs are not delivered through blood vessels as in vivo treatments. Through the advancement of microfluidics technologies, we have enabled the automation of biological fluids delivery through physiological vasculature networks that mimic the physiological circulation of the human body.  The critical bottleneck is to engineer the microenvironment for the formation of vascularized 3D tissues and to also pump and perfuse the tissue vascular network for on-chip microcirculation.  This in vitro model system can be used to screen cancer drugs by mimicking the delivery of the drugs through capillary blood vessels.  On the other hand, microfluidics play an important role in the recent advances in liquid biopsy and the ability to specifically isolate and capture rare cells such as circulating tumor cells. These two technologies may go hand-in-hand to connect in vitro screening to in vivo screening with great potential in the development of personalized medicine.


Add to Calendar ▼2016-09-26 00:00:002016-09-28 00:00:00Europe/LondonLab-on-a-Chip, Microfluidics and Microarrays World Congress 2016Lab-on-a-Chip, Microfluidics and Microarrays World Congress 2016 in San Diego, California, USASan Diego, California, USASELECTBIOenquiries@selectbiosciences.com