Microfluidic Devices Powered by Integrated Elasto-Magnetic Pumps
Jacob Binsley, Student, University of Exeter
Utilizing microfluidics to advance point-of-care testing (POCT) has been an area of great interest in recent decades, resulting in the development of a range of highly capable devices. While some POCT devices can be designed to operate using capillary flow, there are many processes which benefit from active pumping. Producing a self-contained chip-based pumping system allows for actively pumped POCT devices to be used more freely without requiring connections to external pumping systems. A range of driving mechanisms have been studied in this context, although they often require complex fabrication or actuation techniques, limiting their potential applications.
In this presentation, I will show how an asymmetric elasto-magnetic system provides a novel, integrated pumping solution for POCT devices. I will explain how elasto-magnetic devices such as this are capable of producing tuneable and reversible fluid flow and how they can be easily actuated with simple apparatus. This presentation will include how these devices can be manufactured using only standard fabrication techniques already employed in the production of microfluidic devices and therefore how these devices can provide an active pumping solution in portable, low-cost systems.
|
|