James Hickman,
Professor, Nanoscience Technology, Chemistry, Biomolecular Science and Electrical Engineering,
University of Central Florida; Chief Scientist, Hesperos
James J. Hickman is the Founding Director of the NanoScience Technology Center and a Professor of Nanoscience Technology, Chemistry, Biomolecular Science, Biomedical Engineering, Material Science and Electrical Engineering at the University of Central Florida. Previously, he held the position of the Hunter Endowed Chair in the Bioengineering Department at Clemson University. Dr. Hickman has a Ph.D. from the Massachusetts Institute of Technology in Chemistry. For the past thirty years, he has been studying the interaction of biological species with modified surfaces, first in industry and in the latter years in academia. While in industry he established one of the first bioelectronics labs in the country that focused on cell-based sensors and their integration with electronic devices and MEMS devices. He is interested in creating hybrid systems for biosensor and biological computation applications and the creation of functional in vitro systems for human body-on-a-chip applications. He has worked at NSF and DARPA in the area of biological computation. He is also the founder and current Chief Scientist of a biotechnology company, Hesperos, that is focusing on cell-based systems for drug discovery and toxicity. He has 166 publications and 20 book chapters, in addition to 34 issued patents out of 50 total patent applications. He was elected to the Board of Directors of the American Institute for Medical and Biological Engineering (AIMBE) for 2 consecutive terms, the premier society for Biomedical Engineering of which he is a Fellow. He is also a Fellow of the American Vacuum Society (AVS) and National Academy of Inventors (NAI) as well as BioFlorida’s Researcher of the Year (2022). Dr. Hickman along with Dr. Michael Shuler, won the Lush Prize, in the Science Category, which Supports Animal Free Testing in 2015.
Integration of Cells with Silicon Devices for In vitro Tissue Engineering of Functional Systems for Preclinical Drug Discovery
Wednesday, 8 July 2015 at 15:00
Add to Calendar ▼2015-07-08 15:00:002015-07-08 16:00:00Europe/LondonIntegration of Cells with Silicon Devices for In vitro Tissue Engineering of Functional Systems for Preclinical Drug DiscoverySELECTBIOenquiries@selectbiosciences.com
One of the primary limitations in drug discovery and toxicology research is the lack of good model systems between the single cell level and animal or human systems. This is especially true for neurodegenerative diseases such as ALS, Alzheimer’s, and spinal cord injury as well as for cardiac disease. In addition, with the banning of animals for toxicology testing in many industries body-on-a-chip systems to replace animals with human mimics is essential for product development and safety testing. Our research focus is on the establishment of functional in vitro systems to address this deficit where we seek to create organs and subsystems to model motor control, myelination and cognitive function, as well as cardiac subsystems. The idea is to integrate microsystems fabrication technology and surface modifications with protein and cellular components, with the aim of initiating and maintaining self-assembly and growth into biologically, mechanically and electronically interactive functional multi-component systems. The ability to control the surface composition of an in vitro system, as well as controlling other variables, such as growth media and cell preparation, all play important roles in creating a defined system for hybrid device fabrication and in vitro evaluation of surface modifications and their effect on cellular materials. Our advances in culturing adult rat, mouse and human mammalian spinal cord, hippocampal neurons, muscle and cardiac cells in a defined serum-free medium, suggest outstanding potential for answering questions related to maturation, aging, neurodegeneration and injury.
Add to Calendar ▼2015-07-08 00:00:002015-07-09 00:00:00Europe/LondonOrgan-on-a-Chip ConferenceSELECTBIOenquiries@selectbiosciences.com