Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Innovations in Microfluidics 2024: Rapid Prototyping, 3D-Printing

Ian Papautsky's Biography



Ian Papautsky, Richard and Loan Hill Professor of Bioengineering, Co-Director, NSF Center for Advanced Design & Manufacturing of Integrated Microfluidics, University of Illinois at Chicago

Ian Papautsky is the Richard and Loan Hill Professor in the biomedical engineering department. His lab focuses on using microfluidics to innovate blood analysis. Papautsky was one of the pioneers of the inertial microfluidics technology for label-free isolation and analysis of rare cells. His recent work has focused on applying this approach to the fractionation of blood, as well as capture and subsequent molecular profile analysis of circulating tumor cells for liquid biopsy. Papautsky is also co-director of the National Science Foundation Center for Advanced Design and Manufacturing of Integrated Microfluidics, an industry-university collaborative research center that fosters interactions between academics and businesses in the areas of medical devices, pharmacology, and precision agriculture. Papautsky joined the University of Illinois Chicago in 2016. He has been recognized with many awards and honors, including Ohio Bioscience 30 in Their 30s. He is fellow of the AIMBE and the RSC.

Ian Papautsky Image

Whole Blood Microfluidics

Tuesday, 7 May 2024 at 13:30

Add to Calendar ▼2024-05-07 13:30:002024-05-07 14:30:00Europe/LondonWhole Blood MicrofluidicsInnovations in Microfluidics 2024: Rapid Prototyping, 3D-Printing in Ann Arbor, MichiganAnn Arbor, MichiganSELECTBIOenquiries@selectbiosciences.com

Microfluidic devices based on inertial microfluidics have attracted considerable attention for applications in blood fractionation and liquid biopsy due to their label-free nature. However, these devices can be complex, deliver limited throughput, and rely on sample dilution, making them challenging to deploy as routinely used tools. We are developing platforms capable of label-free separation from unmodified whole blood to rapidly fractionate blood cells or screen rare cell populations, for downstream analysis or drug screening.


Add to Calendar ▼2024-05-06 00:00:002024-05-07 00:00:00Europe/LondonInnovations in Microfluidics 2024: Rapid Prototyping, 3D-PrintingInnovations in Microfluidics 2024: Rapid Prototyping, 3D-Printing in Ann Arbor, MichiganAnn Arbor, MichiganSELECTBIOenquiries@selectbiosciences.com