Amy Herr,
Professor,
University Of California Berkeley
Amy E. Herr received a BS degree in Engineering & Applied Science from the California Institute of Technology and MS and PhD degrees from Stanford University in Mechanical Engineering. From 2002-2007, she was a staff member in the Biosystems Research Group at Sandia National Laboratories (Livermore, CA). Professor Herr has been recognized as: 2012 Young Innovator Award from Analytical Chemistry/CBMS, 2012 Ellen Weaver Award from the Association for Women in Science (AWIS, for mentoring), 2011 NSF CAREER award, 2010 NIH New Innovator Award, 2010 Alfred P. Sloan Research Fellowship in chemistry, 2010 New Investigator Award in Analytical Chemistry from Eli Lilly & Co., 2009 Defense Advanced Research Projects Agency (DARPA) Young Faculty Award, among others. Professor Herr has been formally recognized for her teaching & mentoring. Her research interests include bioinstrumentation innovation needed to advance quantitation in life sciences and clinical problems, in particular the study and application of electrokinetic phenomena in multi-stage, heterogeneous bioanalytical microsystems.
Next-Generation Proteomics Tools
Thursday, 18 September 2014 at 14:00
Add to Calendar ▼2014-09-18 14:00:002014-09-18 15:00:00Europe/LondonNext-Generation Proteomics ToolsLab-on-a-Chip, Microfluidics and Microarray World Congress in San Diego, California, USASan Diego, California, USASELECTBIOenquiries@selectbiosciences.com
Technology advances have driven a genomics revolution with sweeping impact on our understanding of life processes. Nevertheless, the arguably more important “proteomics revolution” remains unrealized. Proteins are complex; meaning that multiple physicochemical properties must be assayed. Consequently, proteomic studies are resource intensive and ‘data limited’. To drive a bold transformation of biomedicine, engineering innovation in proteomics instrumentation is needed. While microfluidic technology has advanced separations science, progress lags in the multi-stage separations that are a hallmark of proteomics. This talk will summarize new microengineering design strategies for critical multi-stage protein assays. Specifically, I will introduce our tunable photopatterned materials for switchable function, microfluidic architectures for seamless integration of discrete stages, and multiplexed readouts for quantitation. In a translational example, I will detail assay and design advances from our highly integrated Western blotting platforms. Discussion will span the spectrum of demonstrated assays: from diagnostics for HIV confirmation to biomarker validation of protein isoforms to single cell level Western blotting in the context of stem cell differentiation. Performance and operational gains will be discussed, including quantitation capability, total assay automation, integration of sample preparation, and workflows that require minutes not days. Ultimately, we aim to infuse engineering advances into the biological and biomedical sciences.
Add to Calendar ▼2014-09-18 00:00:002014-09-19 00:00:00Europe/LondonLab-on-a-Chip, Microfluidics and Microarray World CongressLab-on-a-Chip, Microfluidics and Microarray World Congress in San Diego, California, USASan Diego, California, USASELECTBIOenquiries@selectbiosciences.com