Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Lab-on-a-Chip & Microfluidics World Congress 2017

Martyn Boutelle's Biography



Martyn Boutelle, Professor of Biomedical Sensors Engineering, Imperial College London

Martyn Boutelle is Professor of Biomedical Sensors Engineering in the Department of Bioengineering, Imperial College London, and Associate Provost for Estates Planning for Imperial College.
His research group is multidisciplinary comprising, bioengineers, scientists, and clinicians. He develops novel analytical science methods using microfluidics, electrochemical sensors / biosensors, and wireless electronics to make portable (sometimes wearable) monitoring devices for use as point of care devices that typically giving continuous real -time displays. He then uses these in a program of clinical science research focusing on the acute traumatic brain injury including that caused by cardiac arrest, neonatal continuous monitoring and kidney transplantation monitoring. He runs the EPSRC funded Bio-nanofabrication suite designed to make microfluidic and biosensor biosensors using scalable methods to allow use in proof-of-concept clinical trials.

Martyn is past president of the International Society for Monitoring Molecules in Neuroscience, and a founder of the COSBID organization for studying acute human brain injury. He published > 190 papers, chapters and patents. He obtained a BSc and PhD in Chemistry from Imperial College and worked as an EP Abraham Research Fellow in the University of Oxford.

Martyn Boutelle Image

Microfluidic Devices – Key Technologies to Enable Real-Time Patient Monitoring and Treatment

Monday, 2 October 2017 at 15:00

Add to Calendar ▼SELECTBIOenquiries@selectbiosciences.com

Clinical practice is beginning to wake upto the potential of real-time molecular information from venerable tissue as a means to understand the progression in the tissue of injury or disease. Such patterns of molecular changes, particularly when combined with paternal of physical of electrical signatures, offer the exciting possibility of allowing clinicians to guide therapy on an individualized basis in real time. In this presentation I will describe the development of 3D printed microfluidic devices connected to wireless electronics for transplant organ and patient monitoring. Tissue sampling is via integrated microdialysis probes. Concentrations of important biomarkers are measured using microscale amperometric biosensors (energy metabolites, and excitatory neurotransmitters) and ion-selective electrodes (ISE) for tissue ionic balance. Detailed patterns of ionic responses can be revealed using a high density ISE array within the flow stream. High time resolutions can be achieved using a novel droplet based microfluidic system. The presentation with describe the design and optimization challenges and include clinical examples from our recent work.

Microfluidic Devices – Key Technologies to Enable Real-Time Patient Monitoring and Treatment

Monday, 2 October 2017 at 15:00

Add to Calendar ▼SELECTBIOenquiries@selectbiosciences.com

Clinical practice is beginning to wake upto the potential of real-time molecular information from venerable tissue as a means to understand the progression in the tissue of injury or disease. Such patterns of molecular changes, particularly when combined with paternal of physical of electrical signatures, offer the exciting possibility of allowing clinicians to guide therapy on an individualized basis in real time. In this presentation I will describe the development of 3D printed microfluidic devices connected to wireless electronics for transplant organ and patient monitoring. Tissue sampling is via integrated microdialysis probes. Concentrations of important biomarkers are measured using microscale amperometric biosensors (energy metabolites, and excitatory neurotransmitters) and ion-selective electrodes (ISE) for tissue ionic balance. Detailed patterns of ionic responses can be revealed using a high density ISE array within the flow stream. High time resolutions can be achieved using a novel droplet based microfluidic system. The presentation with describe the design and optimization challenges and include clinical examples from our recent work.


Add to Calendar ▼2017-10-02 00:00:002017-10-04 00:00:00Europe/LondonLab-on-a-Chip and Microfluidics World Congress 2017Lab-on-a-Chip and Microfluidics World Congress 2017 in Coronado Island, CaliforniaCoronado Island, CaliforniaSELECTBIOenquiries@selectbiosciences.com