Conferences \ Lab-on-a-Chip and Microfluidics World Congress 2018 \ Agenda \ Steve Soper |
Register | Login |
Nanosensors for Single-molecule SequencingMonday, 1 October 2018 at 16:30 Add to Calendar ▼SELECTBIOenquiries@selectbiosciences.com We are generating a single-molecule DNA sequencing platform that can acquire sequencing information with high accuracy. The technology employs arrays of nanosensors that read the identity of individual mononucleotides from their characteristic electrophoretic mobility and current transient amplitudes through a 2-dimensional (2D) nanochannel (~20 nm in width and depth; <10 µm in length) fabricated in a thermoplastic via nano-imprinting (NIL). The mononucleotides are generated from an intact DNA fragment using a highly processive exonuclease, which is covalently anchored to a plastic solid support contained within a bioreactor that sequentially feeds mononucleotides into the 2D nanochannel. We will discuss the operation of this nanosensor in this presentation as well as its production. Nanosensors for Single-molecule SequencingMonday, 1 October 2018 at 16:30 Add to Calendar ▼SELECTBIOenquiries@selectbiosciences.com We are generating a single-molecule DNA sequencing platform that can acquire sequencing information with high accuracy. The technology employs arrays of nanosensors that read the identity of individual mononucleotides from their characteristic electrophoretic mobility and current transient amplitudes through a 2-dimensional (2D) nanochannel (~20 nm in width and depth; <10 µm in length) fabricated in a thermoplastic via nano-imprinting (NIL). The mononucleotides are generated from an intact DNA fragment using a highly processive exonuclease, which is covalently anchored to a plastic solid support contained within a bioreactor that sequentially feeds mononucleotides into the 2D nanochannel. We will discuss the operation of this nanosensor in this presentation as well as its production. |