Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Innovations in Microfluidics & 3D-Printing Europe 2024

Noah Malmstadt's Biography



Noah Malmstadt, Professor, Mork Family Dept. of Chemical Engineering & Materials Science, University of Southern California

Noah Malmstadt is Professor at the University of Southern California. He received a BS in Chemical Engineering from Caltech and a PhD in Bioengineering from the University of Washington. Following postdoctoral work at UCLA, he joined the Mork Family Department of Chemical Engineering and Materials Science at USC in 2007. Malmstadt is the recipient of a 2012 Office of Naval Research Young Investigator award. His research focuses on microfluidic strategies to facilitate material fabrication and biophysical analysis. He has pioneered the integration of ionic liquids as solvents in droplet microreactors and the application of microfluidic systems to synthesizing biomimetic cell membranes. Microfluidic analytical techniques he has developed include methods for measuring the permeability of cell membranes to druglike molecules and techniques for measuring ionic currents through membrane proteins.

Noah Malmstadt Image

ML-Assisted in situ monitoring of Flow Reactions for Sustainable Solvent Design

Tuesday, 26 March 2024 at 08:30

Add to Calendar ▼2024-03-25 09:00:002024-03-25 10:00:00Europe/LondonWelcome and Introduction by Conference Chairperson -- Scope of the Conference and Topics Covered + Modular Design Workflows for 3D Printed MicrofluidicsInnovations in Microfluidics and 3D-Printing Europe 2024 in Rotterdam, The NetherlandsRotterdam, The NetherlandsSELECTBIOenquiries@selectbiosciences.com

The transition to a sustainable chemical manufacturing infrastructure requires a new approach to solvents: solvent waste must be recycled to reactor feed, closing the material cycle. Ionic liquid (IL) solvents represent a special class of low-volatility, generally safe solvents that are particularly easy to recycle. Recent work from our lab has demonstrated that automated millifluidic flow chemistry routes to IL recycling can reduce their total process cost to the point where they are competitive with traditional volatile organic solvents.

This talk discusses an exemplary application of IL solvents: the fabrication of colloidal catalyst nanoparticles (NPs). While the capacity to produce metallic NPs in ILs has been known for decades, we know little about the mechanism of these reactions and, in particular, how solvent choice can guide this mechanism. To discover the mechanism of Pt NP fabrication in ILs, we have constructed a flow reactor with in-line spectrophotometric monitoring of the products. To determine reaction component concentration from the complex spectral data, we have implemented a machine learning (ML) algorithm that can determine concentration. By measuring product concentration as a function of residence time, we are able to determine the IL solvent-dependent reaction kinetics.

Welcome and Introduction by Conference Chairperson -- Scope of the Conference and Topics Covered + Modular Design Workflows for 3D Printed Microfluidics

Monday, 25 March 2024 at 09:00

Add to Calendar ▼2024-03-25 09:00:002024-03-25 10:00:00Europe/LondonWelcome and Introduction by Conference Chairperson -- Scope of the Conference and Topics Covered + Modular Design Workflows for 3D Printed MicrofluidicsInnovations in Microfluidics and 3D-Printing Europe 2024 in Rotterdam, The NetherlandsRotterdam, The NetherlandsSELECTBIOenquiries@selectbiosciences.com

3D printing brings with it a plethora of advantages for microfluidic applications. Principle among these are rapid prototyping, iterative design, and the ability to avoid the cost and overhead of cleanrooms. However, there is also an inherent advantage in being able to design and build devices in a truly three-dimensional, rather than layer-by-layer, geometry. One simple domain in which the advantages of true 3D routing are clear is in mixing. Control over a 3D geometry allows for multiple complex mixing configurations--herringbones, relamination mixers, chaotic advection--to be trivially constructed and recombined.

We have used these principles of 3D design to construct devices and systems for bioanalytical assays, for manufacturing biomaterials, and for industrial-scale manufacturing of novel materials. This talk will examine all of these applications and the manner in which 3d-centric microfluidic design can enable them.


Add to Calendar ▼2024-03-25 00:00:002024-03-26 00:00:00Europe/LondonInnovations in Microfluidics and 3D-Printing Europe 2024Innovations in Microfluidics and 3D-Printing Europe 2024 in Rotterdam, The NetherlandsRotterdam, The NetherlandsSELECTBIOenquiries@selectbiosciences.com