Steven C. George,
Edward Teller Distinguished Professor and Chair, Department of Biomedical Engineering,
University of California-Davis
Steven C. George, M.D., Ph.D. is a Professor of Biomedical Engineering at the University of California, Davis. He received his bachelors degree in chemical engineering in 1987 from Northwestern University, M.D. from the University of Missouri School of Medicine in 1991, and Ph.D. from the University of Washington in chemical engineering in 1995. He was on the faculty at the University of California, Irvine for 19 years (1995-2014) where he pursued a range of research interests including pulmonary gas exchange, lung mechanics, vascularizing engineered tissues, and microphysiological systems. The NIH FIRST award in 1998 and the CAREER and Presidential Early Career Award for Scientists and Engineers (PECASE) from the National Science Foundation in 1999 have previously recognized his work. While at UCI, he served as the William J. Link Professor and founding Chair of the Department of Biomedical Engineering (2002-2009), the Director of the Edwards Lifesciences Center for Advanced Cardiovascular Technology (2009-2014), and was the PI on a T32 predoctoral training grant from the National Heart Lung and Blood Institute. In 2014 he transitioned to become the Elvera and William Stuckenberg Professor and Chair of Biomedical Engineering at Washington University in St. Louis, and in 2017 moved to the UC Davis. He was elected a fellow in the American Institute of Medical and Biological Engineering (AIMBE) in 2007, a fellow of the Biomedical Engineering Society in 2017, has published more than 140 peer-reviewed manuscripts, and co-founded two early start-up companies. His work is currently funded by grants from the NIH that focus on creating tissue engineered models of the cardiac, pancreas, bone marrow, and cancer microenvironments using induced pluripotent stem cell and microfabrication technology.
“Cancer-on-a-Chip”: Basic and Translational Studies in Cancer Biology
Wednesday, 19 June 2019 at 08:30
Add to Calendar ▼2019-06-19 08:30:002019-06-19 09:30:00Europe/London“Cancer-on-a-Chip”: Basic and Translational Studies in Cancer BiologyOrgan-on-a-Chip and Tissue-on-a-Chip Europe 2019 in Rotterdam, The NetherlandsRotterdam, The NetherlandsSELECTBIOenquiries@selectbiosciences.com
Tissue engineering holds enormous potential to not only replace or restore function to a wide range of tissues, but also to capture and control 3D physiology in vitro (e.g., microphysiological systems or “organ-on-a-chip” technology). The latter has important applications in the fields of drug development, toxicity screening, modeling tumor metastasis, and repairing damaged cardiac (heart) muscle. In order to replicate the complex 3D arrangement of cells and extracellular matrix (ECM), new human microphysiological systems must be developed. The past decade has brought tremendous advances in our understanding of stem cell technology and microfabrication producing a rich environment to create an array of “organ-on-a-chip” designs. Over the past six years we have developed novel microfluidic-based systems of 3D human microtissues (~ 1 mm3) that contain features such as perfused human microvessels, primary human cancer, mouse tumor organoids, stem cells, and spatiotemporal control of oxygen. The technologies are part of two early start-up companies, Kino Biosciences and Immunovalent Therapeutics, based in Irvine, CA and St. Louis, MO. This seminar will describe our approach and early results, including basic and translational studies in cancer biology.
Add to Calendar ▼2019-06-18 00:00:002019-06-19 00:00:00Europe/LondonOrgan-on-a-Chip and Tissue-on-a-Chip Europe 2019Organ-on-a-Chip and Tissue-on-a-Chip Europe 2019 in Rotterdam, The NetherlandsRotterdam, The NetherlandsSELECTBIOenquiries@selectbiosciences.com