Conferences \ Organ-on-a-Chip World Congress & 3D-Culture 2016 \ Agenda \ Nancy Allbritton |
Register | Login |
Microengineered Systems for Recapitulating Intestinal FunctionThursday, 7 July 2016 at 12:15 Add to Calendar ▼SELECTBIOenquiries@selectbiosciences.com Technical advances are making it possible to create tissue microenvironments on platforms that are compatible with high-content screening strategies. We have developed a microfabricated device to enable culture of organized cellular structures possessing much of the complexity and function of intact intestinal tissue. Single stem cells or crypts isolated from primary mouse intestine grow and persist indefinitely as organotypic structures containing all of the expected lineages of the intestinal epithelium. Our microengineered arrays and fluidic devices allow prolonged culture and experimental manipulation of these intestine-on-chip systems. Millimeter-scale primary intestinal epithelium can be formed closely mimicking the polarized 3D in vivo microarchitecture of primary tissue. These systems can also be interrogated by a variety of techniques including fluorescence, immunohistochemistry and genetic analyses. The bioanalytical platforms are envisioned as next generation systems for high-throughput assays of drug- and toxin-interactions with the intestinal epithelia. Microengineered Systems for Recapitulating Intestinal FunctionThursday, 7 July 2016 at 12:15 Add to Calendar ▼SELECTBIOenquiries@selectbiosciences.com Technical advances are making it possible to create tissue microenvironments on platforms that are compatible with high-content screening strategies. We have developed a microfabricated device to enable culture of organized cellular structures possessing much of the complexity and function of intact intestinal tissue. Single stem cells or crypts isolated from primary mouse intestine grow and persist indefinitely as organotypic structures containing all of the expected lineages of the intestinal epithelium. Our microengineered arrays and fluidic devices allow prolonged culture and experimental manipulation of these intestine-on-chip systems. Millimeter-scale primary intestinal epithelium can be formed closely mimicking the polarized 3D in vivo microarchitecture of primary tissue. These systems can also be interrogated by a variety of techniques including fluorescence, immunohistochemistry and genetic analyses. The bioanalytical platforms are envisioned as next generation systems for high-throughput assays of drug- and toxin-interactions with the intestinal epithelia. |