Michael Heller,
Professor, Dept Bioengineering,
University of California-San Diego
Michael J. Heller received his PhD in Biochemistry from Colorado State University in 1973. He was an NIH Postdoctoral Fellow at Northwestern University from 1973 to 1976. From 1976 to 1984 he was supervisor of the DNA Technology Group at Amoco Corporation (Standard Oil Indiana) During that time he carried out early bioengineering and recombinant DNA work on plants, algae and photosynthetic bacteria for energy and chemical production, and developed some of the first fluorescent resonant energy transfer (FRET) and chemiluminescent oligonucleotide probes for DNA hybridization analysis. He also oversaw Amoco’s sponsored energy and chemical research work at Cetus Corporation, which included the cloning of thermophilic enzymes. Dr. Heller was the Director of Molecular Biology at Molecular Biosystems, Inc., from 1984 to 1987. He was a co-founder of Integrated DNA Technologies, and served as President and Chief Operating Officer from 1987 to 1989. He was a co-found of Nanogen and served as the Chief Technical Officer from 1993 to 2001. Nanogen carried out the successful development and commercialization of electronic DNA microarray technology for clinical diagnostic genotyping applications. Dr. Heller is a Professor (Recall/Emeritus) in the Departments of Nanoengineering and Bioengineering at the University California San Diego. He is also now a Distinguished Scientist at the Oregon Health & Science University (OHSU), Center for Cancer Early Detection and Research (CEDAR), in Portland, Oregon. He has also co-founded a company called Biological Dynamics which is developing new sample to answer cancer diagnostics technology, based on the novel dielectrophoretic (DEP) technology developed at his UCSD lab. Dr. Heller has extensive industrial experience in biotechnology, biomedical and molecular diagnostic devices and nanotechnology, with particular expertise in the areas of DNA probe diagnostics, electrokinetic lab-on-a-chip devices, DNA synthesis, FRET/fluorescent-based detection technologies and electric field assisted self-assembly of DNA nanostructures. Dr. Heller has over 100 publications and 56 issued US patents.
Devices and Systems for Point-of-Care Liquid Biopsy Cancer Diagnostics
Wednesday, 28 September 2016 at 14:00
Add to Calendar ▼2016-09-28 14:00:002016-09-28 15:00:00Europe/LondonDevices and Systems for Point-of-Care Liquid Biopsy Cancer DiagnosticsPoint-of-Care Diagnostics and Global Health World Congress 2016 in San Diego, California, USASan Diego, California, USASELECTBIOenquiries@selectbiosciences.com
New AC dielectrophoretic (DEP) microarray/chip devices now allow 15-20-minute isolation of cancer related ccf-DNA, RNA and exosome biomarkers from 20-50ul of blood, plasma or serum. Circulating cell free (ccf) DNA, RNA and exosomes have now become important biomarkers for liquid biopsy cancer diagnostics and hold great promise for early cancer detection. Until recently, the isolation of these biomarkers from patient samples required relatively complex, time consuming and expensive procedures which greatly limits their use for point of care (POC) cancer diagnostic applications. Now using new AC DEP devices for isolation of these biomarkers, specific fluorescent dyes can be used first to simultaneously detect the different biomarker levels directly on the chip (in-situ). In a subsequent step, immunofluorescent analysis can be carried out to identify specific protein biomarkers on the exosomes. Finally, the ccf-DNA and RNA (mRNAs and miRNAs release from the exosomes) can be eluted from the DEP chip, and PCR and sequencing analysis carried out to identify the cancer-related point mutations and other polymorphisms, as well as to further verify the tissue origin of the biomarkers. In the case of our Chronic Lymphocytic Leukemia clinical studies, final PCR and DNA sequencing results for the CLL related ccf-DNA isolated by DEP were found to be exactly comparable to two much more complex and time consuming “gold standard” procedures. In the case of glioblastoma exosomes isolated from plasma, exosome-specific surface and interior proteins CD63 and TSG101 could be detected by immunofluorescence, and mutated EGFRvlll mRNA was detected by RT-PCR. Finally, the exosomal related protein biomarker Glypican-1 could be isolated from pancreatic cancer patient plasma samples by DEP and detected on-chip by immunofluorescence. Thus, DEP represents a powerful new minimally invasive technology for cancer diagnostics.
Add to Calendar ▼2016-09-26 00:00:002016-09-28 00:00:00Europe/LondonPoint-of-Care Diagnostics and Global Health World Congress 2016Point-of-Care Diagnostics and Global Health World Congress 2016 in San Diego, California, USASan Diego, California, USASELECTBIOenquiries@selectbiosciences.com