Steve Soper,
Foundation Distinguished Professor, Director, Center of BioModular Multi-Scale System for Precision Medicine,
The University of Kansas
Prof. Soper is currently a Foundation Distinguished Professor in Chemistry and Mechanical Engineering at the University of Kansas, Lawrence. Prof. Soper also holds an appointment at Ulsan National Institute of Science and Technology in Ulsan, South Korea, where he is a World Class University Professor. He is also serving as a Science Advisor for a number of major worldwide companies. Prof. Soper is currently on the Editorial Board for Scientific Reports and Journal of Micro- and Nanosystems.
As a result of his efforts, Prof. Soper has secured extramural funding totaling >$103M and has published over 265 peer-reviewed manuscripts (h index = 71) and is the author of 20 patents. He is also the founder of a startup company, BioFluidica, which is marketing devices for the isolation and enumeration of circulating tumor cells. His list of awards includes Chemical Instrumentation by the American Chemical Society, the Benedetti-Pichler Award for Microchemistry, Fellow of the AAAS, Fellow of Applied Spectroscopy, Fellow of the Royal Society of Chemistry, R&D 100 Award, Distinguished Masters Award at LSU and Outstanding Scientist/Engineer in the state of Louisiana in 2001. Finally, Prof. Soper has granted 60 PhDs and 6 MS degrees to students under his mentorship. He currently heads a group of 20 researchers.
Polymer-based Nanosensors using Flight-Time Identification of Mononucleotides for Single-Molecule Sequencing
Tuesday, 27 September 2016 at 16:55
Add to Calendar ▼2016-09-27 16:55:002016-09-27 17:55:00Europe/LondonPolymer-based Nanosensors using Flight-Time Identification of Mononucleotides for Single-Molecule SequencingNGS, SCA, SMA and Mass Spec: Research to Diagnostics 2016 in San Diego, California, USASan Diego, California, USASELECTBIOenquiries@selectbiosciences.com
We are generating a single-molecule DNA sequencing platform that can
acquire sequencing information with high accuracy. The technology
employs high density arrays of nanosensors that read the identity of
individual mononucleotides from their characteristic flight-time through
a 2-dimensional (2D) nanochannel (~20 nm in width and depth; >100 µm
in length) fabricated in a thermoplastic via nano-imprinting (NIL). The
mononucleotides are generated from an intact DNA fragment using a
highly processive exonuclease, which is covalently anchored to a plastic
solid support contained within a bioreactor that sequentially feeds
mononucleotides into the 2D nanochannel. The identity of the
mononucleotides is deduced from a molecular-dependent flight-time
through the 2D nanochannel. The flight time is read in a label-less
fashion by measuring current transients induced a single mononucleotide
when it travels through a constriction with molecular dimensions (<10
nm in diameter) that are poised at the input/output ends of the flight
tube. In this presentation, our efforts on building these polymer
nanosensors using NIL in thermoplastics will be discussed and the
detection of single molecules using electrical transduction with their
identity deduced from the associated flight time provided. Finally,
information on the manipulation of single DNA molecules using
nanofluidic circuits will be discussed that takes advantage of forming
unique nano-scale features to shape electric fields for DNA manipulation
and serves as the functional basis of the nanosensing platform.
Add to Calendar ▼2016-09-26 00:00:002016-09-28 00:00:00Europe/LondonNGS, SCA, SMA and Mass Spec: Research to Diagnostics 2016NGS, SCA, SMA and Mass Spec: Research to Diagnostics 2016 in San Diego, California, USASan Diego, California, USASELECTBIOenquiries@selectbiosciences.com