Volker Hessel,
Professor,,
The University of Adelaide
Prof. Volker Hessel studied chemistry at Mainz University/D. 1994: Institut für Mikrotechnik Mainz/Germany (Director R&D); 2005: Professor Eindhoven University of Technology/NL; 2018: Deputy Dean (Research), Professor University of Adelaide, Australia; 2019: part-time professor University of Warwick/UK.
He is author of 678 peer-reviewed publications (h-index: 90; >37,000 citations). He received the AIChE Excellence in Process Development Research Award, IUPAC ThalesNano Prize in Flow Chemistry. He is program lead in the ARC Centre of Excellence Plants for Space (P4S), and is Research Director of the Andy Thomas Centre for Space Resources. He received several EU’s research excellence grants (ERC Advanced/Proof of Concept/Synergy, FET OPEN). He is a member on the College of Experts for the National Research Foundation (NRF) within the Prime Minister’s Office”.
Flow and Plasma Chemistry – Disruptive Technologies Transform Industry through Theme-based Approach
Thursday, 14 November 2019 at 09:30
Add to Calendar ▼2019-11-14 09:30:002019-11-14 10:30:00Europe/LondonFlow and Plasma Chemistry – Disruptive Technologies Transform Industry through Theme-based ApproachFlow Chemistry Asia 2019 in Tokyo, JapanTokyo, JapanSELECTBIOenquiries@selectbiosciences.com
At our Faculty at the University of Adelaide, we have developed a unique Theme-based approach which truly leads to an interdisciplinary research outcome (as opposed to multidisciplinary), and this is run as cross-faculty and cross-discipline action. Core is a selection and targeting of industrial windows of opportunity to be translated to an industrial showcases, which is followed by technology development and stakeholder engagement. Outcome is an aim for transformative change of industry by disruptive technologies, breaking with existing approaches, and pharmaceutical industry was changed that way. This offers release of large sustainability gain and leads to entirely new business models. One feature and benefit of themes is to allow to cluster own research. First attempt was in 2007 with a cluster on Novel Process Windows (NPW). Those regimes systematically utilise unusual and typically harsh process conditions for enhanced activation of chemistries in continuous-flow and connection of multi-step chemistries [Hessel, ChemSusChem 2013]. In this talk, three recent thematic research clusters will be presented, to show how above methodology guides and promotes holistic, transformative research.
Solvent Factory (2017 onward) The FET-Open project ONE-FLOW translates the ‘vertical hierarchy’ of chemical multistep synthesis with its complex machinery into self-organising ‘horizontal hierarchy’ of a compartmentalized flow reactor system (www.one-flow.org). The new concept of a ‘Solvent Factory’ uses multi-phase liquids as integrated reactor-separator; ideally without need of any post-processing and –purification steps. This switch from hardware- to soft matter processing tools is especially beneficial, when approaching multi-step reactions with its many reactors and separators, and replacing them by one. Fertilizing with Wind (2014 onward) Plasma-enabled chemical nitrogen fixation using air (N2) allows to manufacture NO/NO2 which can be further converted to yield nitric acid by absorption in aqueous solution. In a similar way, nitrogen and hydrogen can be reacted by plasma catalysis to give ammonia. In this way, fertilisers can be made “out of air” and using wind as green energy source. It will be discussed how this can lead to a transformation of agriculture to a precision horticulture. This is currently implemented in Uganda, as much growing AgTech nation, and e-agriculture, based on ICT using mobile phones, is a cross-discipline enabler. With U Warwick, the ERC Synergy research offers a large opportunity for fundamental revisit of plasma catalysis and its symbiosis.
Space manufacturing (2018 onward) Space manufacturing is off-earth manufacturing - the advanced technologies are for dual use: also on earth, in deep sea, in dry lands, and other disruptive scenarios. Space medicine is already now a business case and the next cancer drug might be developed in space. A think tank analysis has been made how to make medicines and nanoformulations stable to cosmic rays. Space mining is at the edge to become a business case. Flow-based extraction of artificial asteroid ores is investigated with coiled micro-flow inverters, posing adjacent metal separation tasks, not known on earth. A topic of similar importance is the continuous-flow based soil-solvent extraction of phosphorus (with and without rare earths); the remote mine might be in Morocco’s Western Sahara or in Moon’s Procellarum KREEP Terrane. Space farming is a mid-term development issue, and plasma based N-fixation can play a key role. Space chemistry research on flow-made quantum dots will be presented, hosted on a satellite, will be reported, to sever as satellite decoy for counterstrike measure. This demands fluid flow without pumps. A stop-flow for three reaction steps comprises solid-liquid mixing under zero gravity, heating and reaction, and ejection of a nanodust cloud in the space.
Add to Calendar ▼2019-11-14 00:00:002019-11-15 00:00:00Europe/LondonFlow Chemistry Asia 2019Flow Chemistry Asia 2019 in Tokyo, JapanTokyo, JapanSELECTBIOenquiries@selectbiosciences.com