Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Lab-on-a-Chip and Microfluidics Asia 2023

Steve Soper's Biography



Steve Soper, Foundation Distinguished Professor, Director, Center of BioModular Multi-Scale System for Precision Medicine, The University of Kansas

Prof. Soper is currently a Foundation Distinguished Professor in Chemistry and Mechanical Engineering at the University of Kansas, Lawrence. Prof. Soper also holds an appointment at Ulsan National Institute of Science and Technology in Ulsan, South Korea, where he is a World Class University Professor. He is also serving as a Science Advisor for a number of major worldwide companies. Prof. Soper is currently on the Editorial Board for Scientific Reports and Journal of Micro- and Nanosystems.

As a result of his efforts, Prof. Soper has secured extramural funding totaling >$103M and has published over 265 peer-reviewed manuscripts (h index = 71) and is the author of 20 patents. He is also the founder of a startup company, BioFluidica, which is marketing devices for the isolation and enumeration of circulating tumor cells. His list of awards includes Chemical Instrumentation by the American Chemical Society, the Benedetti-Pichler Award for Microchemistry, Fellow of the AAAS, Fellow of Applied Spectroscopy, Fellow of the Royal Society of Chemistry, R&D 100 Award, Distinguished Masters Award at LSU and Outstanding Scientist/Engineer in the state of Louisiana in 2001. Finally, Prof. Soper has granted 60 PhDs and 6 MS degrees to students under his mentorship. He currently heads a group of 20 researchers.

Steve Soper Image

RNA Sequencing using a Nanofluidic Device with Dual In-Plane Nanopore Sensors

Thursday, 5 October 2023 at 14:00

Add to Calendar ▼2023-10-05 14:00:002023-10-05 15:00:00Europe/LondonRNA Sequencing using a Nanofluidic Device with Dual In-Plane Nanopore SensorsLab-on-a-Chip and Microfluidics Asia 2023 in Tokyo, JapanTokyo, JapanSELECTBIOenquiries@selectbiosciences.com

With the development of next generation sequencing (NGS), the field of transcriptomics has seen tremendous advancements opening up opportunities for improved diagnostics of diseases such as cancers and infectious diseases. RNA sequencing enables measurement of single nucleotide variants (SNVs), insertions and deletions, detection of different transcript isoforms, splice variants, and chimeric gene fusions. Although NGS has been useful for unraveling RNA structure and function, several technical difficulties remain including the need for reverse transcription and PCR amplification, which can mask epitranscriptomic modifications. To address NGS issues, we are developing an exciting new sequencing technology called Exonuclease Time-of-Flight (X-ToF) for the label-free detection and identification of single molecules. The hypothesis behind X-ToF is, “individual molecules moving electrokinetically through a 2D nanotube will experience a time-of-flight (ToF) that is dependent upon its molecular identity.”  X-ToF is a nanofluidic device comprised of input/output channels, a nano-scale enzymatic bioreactor, and a flight tube equipped with a pair of in-plane nanopores to measure the ToF of a single ribonucleotide monophosphate (rNMP). Each rNMP is produced from an unamplified RNA molecule using a processive exoribonuclease, XRN1. In this presentation we will discuss the high rate manufacturing of the X-ToF chip with sub-5 nm in-plane nanopores using nano-injection molding from a cyclic olefin polymer (COP) plastic. The in-plane pores are situated at either end of a nanochannel (50 x 50 nm; 5 µm long) that generate current transient signals to detect and deduce the identity of rNMPs. The ToF is dependent on the apparent electrophoretic mobility of the molecule. The identity is determined from the ToF, the current transient amplitudes, and dwell times using multi-parameter Principle Component Analysis (PCA). We will show the ability to detect (detection efficiency ~100%) single rNMPs with identification accuracies >98%. Finally, we will discuss the generation of solid-phase nano-bioreactors using XRN1, which can cleave ssRNA in the 5’ to 3’direction releasing rNMPs. Unique properties of the immobilized enzyme will be presented in terms of its processivity and kinetic rate of cleaving single RNA molecules.


Add to Calendar ▼2023-10-05 00:00:002023-10-06 00:00:00Europe/LondonLab-on-a-Chip and Microfluidics Asia 2023Lab-on-a-Chip and Microfluidics Asia 2023 in Tokyo, JapanTokyo, JapanSELECTBIOenquiries@selectbiosciences.com