Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Lab-on-a-Chip, Microfluidics, & Organ-on-a-Chip Asia 2024

Noah Malmstadt's Biography



Noah Malmstadt, Professor, Mork Family Dept. of Chemical Engineering & Materials Science, University of Southern California

Noah Malmstadt is Professor at the University of Southern California. He received a BS in Chemical Engineering from Caltech and a PhD in Bioengineering from the University of Washington. Following postdoctoral work at UCLA, he joined the Mork Family Department of Chemical Engineering and Materials Science at USC in 2007. Malmstadt is the recipient of a 2012 Office of Naval Research Young Investigator award. His research focuses on microfluidic strategies to facilitate material fabrication and biophysical analysis. He has pioneered the integration of ionic liquids as solvents in droplet microreactors and the application of microfluidic systems to synthesizing biomimetic cell membranes. Microfluidic analytical techniques he has developed include methods for measuring the permeability of cell membranes to druglike molecules and techniques for measuring ionic currents through membrane proteins.

Noah Malmstadt Image

Understanding Three-Dimensional Microfluidic Design to Optimize Lipid Nanoparticle Fabrication

Thursday, 7 November 2024 at 12:00

Add to Calendar ▼2024-11-07 18:00:002024-11-07 19:00:00Europe/LondonFlow Reactors for Sustainable Colloidal Synthesis of NanocrystalsLab-on-a-Chip, Microfluidics, and Organ-on-a-Chip Asia 2024 in Tokyo, JapanTokyo, JapanSELECTBIOenquiries@selectbiosciences.com

3D printing brings with it a plethora of advantages for microfluidic applications. Principle among these are rapid prototyping, iterative design, and the ability to avoid the cost and overhead of cleanrooms. However, there is also an inherent advantage in being able to design and build devices in a truly three-dimensional, rather than layer-by-layer, geometry. One simple domain in which the advantages of true 3D routing are clear is in mixing. Control over a 3D geometry allows for multiple complex mixing configurations--herringbones, relamination mixers, chaotic advection--to be trivially constructed and recombined. We have deployed these principles of 3D design to design simple, compact devices for the high-throughput manufacture of lipid nanoparticles (LNPs). LNPs are drug delivery vehicles of increasing importance: they have demonstrate effectiveness and scalability as the delivery vehicles for mRNA-based vaccines against SARS-CoV-2 and emerging research is demonstrating that they have broad applications in vaccine delivery and beyond. This talk discusses how microfluidic mixing controls the size, structure, and uniformity of LNPs with several drug-like payloads including mRNA and therapeutic peptides.

Flow Reactors for Sustainable Colloidal Synthesis of Nanocrystals

Thursday, 7 November 2024 at 18:00

Add to Calendar ▼2024-11-07 18:00:002024-11-07 19:00:00Europe/LondonFlow Reactors for Sustainable Colloidal Synthesis of NanocrystalsLab-on-a-Chip, Microfluidics, and Organ-on-a-Chip Asia 2024 in Tokyo, JapanTokyo, JapanSELECTBIOenquiries@selectbiosciences.com

Nanocrystal materials including metals, metal carbides and phosphides, and perovskites have broad applications in the transition to sustainable energy. In particular, they can serve as next-generation catalysts for carbon dioxide conversion, fuel cell membranes, and biofuel upgrading. While there are well-established routes to the colloidal synthesis of these materials, they are highly sensitive to local reaction environment, and it has been challenging to scale their production using traditional chemical manufacturing technologies. On the other hand, millifluidic flow reactors, which can deliver excellent reaction environment uniformity, are a promising route to the production of colloidal nanocrystals. Recent work has demonstrated that scaling millifluidic reactors via parallelization can approach industrially relevant product throughput. Flow reactors are also powerful tools for reaction discovery. Here, we present two examples of how flow reactor systems can be used to understand the parameter space of nanocrystal synthesis reactions and identify targeted reaction conditions. The first of these examples is the production of Pt nanoparticles (NPs) in ionic liquids (ILs). Ionic liquid (IL) solvents represent a special class of low-volatility, generally safe solvents that are particularly easy to recycle. While the capacity to produce metallic NPs in ILs has been known for decades, we know little about the mechanism of these reactions and in particular how solvent choice can guide this mechanism. To discover the mechanism of Pt NP fabrication in ILs, we have constructed a flow reactor with in-line spectrophotometric monitoring of the products. To determine reaction component concentration from the complex spectral data, we have implemented a machine learning (ML) algorithm that can determine concentration. By measuring product concentration as a function of residence time, we are able to determine the IL solvent-dependent reaction kinetics. The second example involves synthesizing photoactive perovskite nanocrystals in a parallel flow reactor system. By controlling hydrodynamic resistance across the channel network, we are able to rapidly screen composition space for the reactants. Analyzing these high throughput data with a neural network facilitates the construction of a map between reactant composition space and product crystal phase space, allowing for manufacturing to target a desired product phase.


Add to Calendar ▼2024-11-07 00:00:002024-11-08 00:00:00Europe/LondonLab-on-a-Chip, Microfluidics, and Organ-on-a-Chip Asia 2024Lab-on-a-Chip, Microfluidics, and Organ-on-a-Chip Asia 2024 in Tokyo, JapanTokyo, JapanSELECTBIOenquiries@selectbiosciences.com