Steve Soper,
Foundation Distinguished Professor, Director, Center of BioModular Multi-Scale System for Precision Medicine,
The University of Kansas
Prof. Soper is currently a Foundation Distinguished Professor in Chemistry and Mechanical Engineering at the University of Kansas, Lawrence. Prof. Soper also holds an appointment at Ulsan National Institute of Science and Technology in Ulsan, South Korea, where he is a World Class University Professor. He is also serving as a Science Advisor for a number of major worldwide companies. Prof. Soper is currently on the Editorial Board for Scientific Reports and Journal of Micro- and Nanosystems.
As a result of his efforts, Prof. Soper has secured extramural funding totaling >$103M and has published over 265 peer-reviewed manuscripts (h index = 71) and is the author of 20 patents. He is also the founder of a startup company, BioFluidica, which is marketing devices for the isolation and enumeration of circulating tumor cells. His list of awards includes Chemical Instrumentation by the American Chemical Society, the Benedetti-Pichler Award for Microchemistry, Fellow of the AAAS, Fellow of Applied Spectroscopy, Fellow of the Royal Society of Chemistry, R&D 100 Award, Distinguished Masters Award at LSU and Outstanding Scientist/Engineer in the state of Louisiana in 2001. Finally, Prof. Soper has granted 60 PhDs and 6 MS degrees to students under his mentorship. He currently heads a group of 20 researchers.
Integrated Fluidic System for Analysis of Circulating Tumor Cells: Searching for Drug-induced DNA Damage using Nanosensors
Tuesday, 29 September 2015 at 09:30
Add to Calendar ▼2015-09-29 09:30:002015-09-29 10:30:00Europe/LondonIntegrated Fluidic System for Analysis of Circulating Tumor Cells: Searching for Drug-induced DNA Damage using NanosensorsLab-on-a-Chip, Microfluidics and Microarrays World Congress in San Diego, California, USASan Diego, California, USASELECTBIOenquiries@selectbiosciences.com
There has been progress made in early detection of breast cancers and better classification of breast malignancies. But, improved therapies that yield more cures and better overall survival are still needed; women with breast cancer still have a poor prognosis with a 5-year survival rate of 22% (Stage IV) and 72% (Stage III). Doxorubicin, cisplatin, paclitaxel, and tamoxifen are examples of drugs used for treating breast cancer with selection of therapy typically based on the classification and staging of the patient’s cancer. While treatment regimens assigned to some patients may be optimal using the current classification model, others within certain breast cancer sub-types fail therapy. New assays must be developed to determine how a patient’s physiology affects drug efficacy. In this presentation, an integrated fluidic system for the isolation and processing of circulating tumor cells (CTCs) will be discussed. The system quantifies response to therapy using three pieces of information secured from the CTCs; (1) CTC number; (2) CTC viability; and (3) the frequency of DNA damage (abasic (AP) sites) in genomic DNA (gDNA) harvested from the CTCs. The fluidic system consists of task-specific modules integrated to a fluidic motherboard. Micro-scale modules are used for CTC selection, CTC enumeration and viability determinations, lysing CTCs, and purifying gDNA. The module to read AP sites is a nanosensor made via embossing in plastics and contains a nanochannel with dimensions less than the persistence length of double-stranded DNA (~50 nm). Labeling AP sites with fluorescent dyes and stretching the gDNA in the nanochannel allows for direct readout of the AP sites, even from a few CTCs.
Add to Calendar ▼2015-09-28 00:00:002015-09-30 00:00:00Europe/LondonLab-on-a-Chip, Microfluidics and Microarrays World CongressLab-on-a-Chip, Microfluidics and Microarrays World Congress in San Diego, California, USASan Diego, California, USASELECTBIOenquiries@selectbiosciences.com