Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Lab-on-a-Chip and Microfluidics 2020

Steve Soper's Biography



Steve Soper, Foundation Distinguished Professor, Director, Center of BioModular Multi-Scale System for Precision Medicine, The University of Kansas

Prof. Soper is currently a Foundation Distinguished Professor in Chemistry and Mechanical Engineering at the University of Kansas, Lawrence. Prof. Soper also holds an appointment at Ulsan National Institute of Science and Technology in Ulsan, South Korea, where he is a World Class University Professor. He is also serving as a Science Advisor for a number of major worldwide companies. Prof. Soper is currently on the Editorial Board for Scientific Reports and Journal of Micro- and Nanosystems.

As a result of his efforts, Prof. Soper has secured extramural funding totaling >$103M and has published over 265 peer-reviewed manuscripts (h index = 71) and is the author of 20 patents. He is also the founder of a startup company, BioFluidica, which is marketing devices for the isolation and enumeration of circulating tumor cells. His list of awards includes Chemical Instrumentation by the American Chemical Society, the Benedetti-Pichler Award for Microchemistry, Fellow of the AAAS, Fellow of Applied Spectroscopy, Fellow of the Royal Society of Chemistry, R&D 100 Award, Distinguished Masters Award at LSU and Outstanding Scientist/Engineer in the state of Louisiana in 2001. Finally, Prof. Soper has granted 60 PhDs and 6 MS degrees to students under his mentorship. He currently heads a group of 20 researchers.

Steve Soper Image

Plastic-based Nanofluidic Sensor for the Detection of Rare Nucleic Acids and Determining Their Sequence Variations from Liquid Biopsy Markers

Tuesday, 29 September 2020 at 14:30

Add to Calendar ▼2020-09-29 14:30:002020-09-29 15:30:00Europe/LondonPlastic-based Nanofluidic Sensor for the Detection of Rare Nucleic Acids and Determining Their Sequence Variations from Liquid Biopsy MarkersLab-on-a-Chip and Microfluidics 2020 in Virtual ConferenceVirtual ConferenceSELECTBIOenquiries@selectbiosciences.com

Liquid biopsy markers (circulating tumor cells, CTCs; extracellular vesicles, EVs; and cell free DNA, cfDNA) are becoming extremely popular to manage a variety of cancer-related diseases due to the minimally invasive nature of their acquisition. However, the challenge with liquid biopsy markers is their rarity; for example, it is not uncommon to secure 1-100 CTCs per mL of whole blood supplying about 6-600 pg of genomic DNA. Because platforms like next generation sequencing require >30 ng of input DNA, significant amounts of amplification of the input are required that can generate a biased representation of the genome. To mitigate this issue, we have produced a mixed-scale nanofluidic sensor featuring a baffle area, high surface area pillar arrays, and nanometer flight tubes.  The pixel arrays can perform solid-phase ligase detection reactions (spLDRs) to score the presence of DNA mutations found in a diseased patient even when the mass of the marker is low (<1 ng), but does not require PCR amplification for the analysis. The spLDR can also expression profile mRNAs following reverse transcription. Successfully formed spLDR products are identified using a molecular-dependent time-of-flight (TOF) through a polymer nanofluidic channel flanked by two in-plane nanopores. Simulations (COMSOL) were used to guide the design and fabrication of the nanofluidic sensor to determine the loading efficiency and transport patterns of spLDR products from the pillar array into the flight tubes by evaluating operational parameters when using either hydrodynamic or electrokinetic flow. The nanofluidic sensor was fabricated from a Si master patterned using a combination of focused ion beam (FIB) milling and photolithography with inductively coupled plasma reactive ion etching. The Si master was used to produce resin stamps that were then used to transfer the relevant structures to a plastic via thermal nanoimprint lithography (NIL). The operational features of the device will be presented as well as detecting point mutations in KRAS genes from CTCs’ genomic DNA as well as mRNA expression profiling.


Add to Calendar ▼2020-09-28 00:00:002020-09-30 00:00:00Europe/LondonLab-on-a-Chip and Microfluidics 2020Lab-on-a-Chip and Microfluidics 2020 in Virtual ConferenceVirtual ConferenceSELECTBIOenquiries@selectbiosciences.com