Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Bioengineering for Building Microphysiological Systems 2022

James Hickman's Biography

James Hickman, Professor, Nanoscience Technology, Chemistry, Biomolecular Science and Electrical Engineering, University of Central Florida; Chief Scientist, Hesperos

James J. Hickman is the Founding Director of the NanoScience Technology Center and a Professor of Nanoscience Technology, Chemistry, Biomolecular Science, Biomedical Engineering, Material Science and Electrical Engineering at the University of Central Florida. Previously, he held the position of the Hunter Endowed Chair in the Bioengineering Department at Clemson University. Dr. Hickman has a Ph.D. from the Massachusetts Institute of Technology in Chemistry. For the past thirty years, he has been studying the interaction of biological species with modified surfaces, first in industry and in the latter years in academia. While in industry he established one of the first bioelectronics labs in the country that focused on cell-based sensors and their integration with electronic devices and MEMS devices. He is interested in creating hybrid systems for biosensor and biological computation applications and the creation of functional in vitro systems for human body-on-a-chip applications. He has worked at NSF and DARPA in the area of biological computation. He is also the founder and current Chief Scientist of a biotechnology company, Hesperos, that is focusing on cell-based systems for drug discovery and toxicity. He has 166 publications and 20 book chapters, in addition to 34 issued patents out of 50 total patent applications. He was elected to the Board of Directors of the American Institute for Medical and Biological Engineering (AIMBE) for 2 consecutive terms, the premier society for Biomedical Engineering of which he is a Fellow. He is also a Fellow of the American Vacuum Society (AVS) and National Academy of Inventors (NAI) as well as BioFlorida’s Researcher of the Year (2022). Dr. Hickman along with Dr. Michael Shuler, won the Lush Prize, in the Science Category, which Supports Animal Free Testing in 2015.

James Hickman Image

Human on a Chip Systems Applied to Neurodegenerative and Rare Diseases

Monday, 24 October 2022 at 14:00

Add to Calendar ▼2022-10-24 14:00:002022-10-24 15:00:00Europe/LondonHuman on a Chip Systems Applied to Neurodegenerative and Rare DiseasesBioengineering for Building Microphysiological Systems 2022 in Rotterdam, The NetherlandsRotterdam, The

We have been constructing multi-organ human-on-a-chip systems for toxicology and efficacy with up to 6 organs and have demonstrated long-term (>28 days) evaluation of drugs and compounds, that have shown similar response to results seen from clinical data or reports in the literature. Application of these systems for neurodegenerative and rare diseases such as ALS, Alzheimer’s, CIDP, MMN, Myasthenia gravis, as well as its application to opioid overdose and recovery will be described. These models utilize a pumpless platform with serum free recirculating medium, which is a low volume system that can evaluate parent compounds as well as metabolites, if the liver is included. Our research focus is on the establishment of functional in vitro systems to address phenotypic deficits to create organs and subsystems to model motor control, muscle function, myelination and cognitive function, as well as the potential for including cardiac, BBB, kidney, GI tract and liver subsystems. Acute and chronic compound testing in systems for concurrent measurement of both efficacy and toxicity has also been done in the same system for therapeutic index estimation. A specific embodiment of this technology is the creation of a functional human NMJ system to understand ALS where we have investigated the four primary mutations found in ALS patients; SOD1, FUS, TDP43 and C9ORF72 and demonstrated variations of the disease phenotype as well as response to therapeutics. We also will describe an Alzheimer’s disease model based on long-term potentiation, a correlate for learning and memory, which has reproduced aspects of amyloidopathy and tauopathy, and shown drug selective reversal with current AD therapeutics. Sanofi has used efficacy data from one of our models to file an IND that has enabled a clinical trial (#NCT04658472) and is described in our recent joint publication (Rumsey et al. 2022). We will also describe a multi-organ innate immune system that was able to reproduce the pro-inflammatory and restorative phenotypes from macrophages.

Add to Calendar ▼2022-10-24 00:00:002022-10-25 00:00:00Europe/LondonBioengineering for Building Microphysiological Systems 2022Bioengineering for Building Microphysiological Systems 2022 in Rotterdam, The NetherlandsRotterdam, The