Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Organ-on-a-Chip and Body-on-a-Chip: In Vitro Systems Mimicking In Vivo Functions "Track A"

Nancy Allbritton's Biography



Nancy Allbritton, Kenan Professor of Chemistry and Biomedical Engineering and Chair of the Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University

Nancy L. Allbritton is the Kenan Professor of Chemistry and Biomedical Engineering and Chair of the Joint Department of Biomedical Engineering at the University of North Carolina at Chapel Hill (UNC) and North Carolina State University (NC State). Her research focuses on the development of novel technologies for applications in single-cell analysis, micro-arrays and fluidics, and organ-on-chip and has resulted in over 180 full-length journal publications and patents and led to 15 commercial products. Her research program has been well funded by the National Institutes of Health with $60 million in grant funding since 1994. Four companies have been formed based on her research discoveries: Protein Simple (acquired by Bio-Techne in 2014 for $308M), Intellego (subsequently integrated into International Rectifier), Cell Microsystems (www.cellmicrosystems.com), and Altis Biosystems (www.altisbiosystems.com). Dr. Allbritton is a Fellow of the American Association for the Advancement of Science, the American Institute for Medical & Biological Engineering, and the National Academy of Inventors. She obtained her B.S. in physics from Louisiana State University, M.D. from Johns Hopkins University, and Ph.D. in Medical Physics/Medical Engineering from the Massachusetts Institute of Technology, with a postdoctoral fellowship at Stanford University.

Nancy Allbritton Image

Intestine on a Chip for Basic Biology and Patient-Specific Medicine

Thursday, 4 October 2018 at 09:00

Add to Calendar ▼2018-10-04 09:00:002018-10-04 10:00:00Europe/LondonIntestine on a Chip for Basic Biology and Patient-Specific MedicineSELECTBIOenquiries@selectbiosciences.com

Technical advances are making it possible to create tissue microenvironments on platforms that are compatible with high-content screening strategies. We have developed microfabricated devices to enable culture of organized cellular structures which possess much of the complexity and function of intact intestinal tissue.  Stem-cell culture enables single stem cells or intestinal crypts isolated from primary small or large intestine from humans or mice to grow and persist indefinitely as organotypic structures containing all of the expected lineages of the intestinal epithelium.  Our microengineered arrays and fluidic devices build on this knowledge base to reconstruct millimeter-scale primary intestinal epithelium that closely mimics the polarized 3D in vivo microarchitecture of the intestine Chemical gradients of growth and differentiation factors as well as cytokines are readily applied across the tissues. These bioanalytical platforms are envisioned as next generation systems for assay of microbiome-, drug- and toxin-interactions with the intestinal epithelia. Finally intestinal biopsy samples can be used to populate the constructs with cells producing patient-specific tissues for personalized medicine.


Add to Calendar ▼2018-10-04 00:00:002018-10-05 00:00:00Europe/LondonOrgan-on-a-Chip and Body-on-a-Chip: In Vitro Systems Mimicking In Vivo Functions "Track A"SELECTBIOenquiries@selectbiosciences.com