Lab on a Particle Technology for Functional Discovery of Rare and Unconventional T-Cell Receptors

Thursday, 5 October 2023 at 17:00

Add to Calendar ▼2023-10-05 17:00:002023-10-05 18:00:00Europe/LondonLab on a Particle Technology for Functional Discovery of Rare and Unconventional T-Cell ReceptorsLab-on-a-Chip and Microfluidics Asia 2023 in Tokyo, JapanTokyo, JapanSELECTBIOenquiries@selectbiosciences.com

Lab on a particle technologies are emerging as a rapidly adopted platform for performing single-cell functional screening leveraging standard instrumentation, such as flow cytometers and microfluidic single-cell sequencing platforms. Each cell and its secreted products can be analyzed and sorted using widely available fluorescence activating cell sorters operating at up to a 1000 cells per second, promising to democratize single-cell technologies. The platform enables sorting cells based on secreted products for the discovery of antibodies, the development of cell lines producing recombinant products, and the selection of functional cells for cell therapies. Here, I will describe our progress in using nanovial particles for the characterization and discovery of antigen-specific and metabolite-specific T cells. Nanovials enable selective binding, functional characterization of secretion of cytokines and other effector molecules, and sorting of T cells for downstream T-cell receptor sequencing and functional annotation. We apply oligo barcoding technology to both multiplex target antigens and functional performance and link this to the TCR sequence information. Nanovials can enable more rapid discovery of cancer-specific TCRs and TCRs against metabolites presented by unconventional MHC-like molecules, with high accuracy, promising to transform the discovery of critical recognition elements for improved T cell therapies.

Dino Di Carlo, Armond and Elena Hairapetian Chair in Engineering and Medicine, Professor and Vice Chair of Bioengineering, University of California-Los Angeles

Dino Di Carlo

Dino Di Carlo received his B.S. in Bioengineering from the University of California, Berkeley in 2002 and received a Ph.D. in Bioengineering from the University of California, Berkeley and San Francisco in 2006. From 2006-2008 he conducted postdoctoral studies in the Center for Engineering in Medicine at Harvard Medical School. He has been on the faculty in the Department of Bioengineering at UCLA since 2008 and now as Professor of Bioengineering and Mechanical Engineering serves as the Vice Chair of the Department and as the director of the Cancer Nanotechnology Program in the Jonsson Comprehensive Cancer Center. His research pioneered the use of inertial fluid dynamic effects for the control, separation, and analysis of cells in microfluidic devices. His recent work extends into numerous other fields of biomedicine and biotechnology including directed evolution, cell analysis for rapid diagnostics, new amplified molecular assays, next generation biomaterials, and phenotypic drug screening. He has also been a leader in technology entrepreneurship: He co-founded and currently serves on the board of directors of five companies that are commercializing UCLA intellectual property developed in his lab (CytoVale, Vortex Biosciences, Tempo Therapeutics, Forcyte Biotechnologies and Ferrologix). Among other honors he received the Presidential Early Career Award for Scientists and Engineers (PECASE) and was elected a Fellow of the American Institute for Medical and Biological Engineering in 2016, was elected a Fellow of the Royal Society of Chemistry (FRSC) in 2014, was awarded the National Science Foundation (NSF) Faculty Early Career Development award and the U.S. Office of Naval Research (ONR) Young Investigator Award, the Packard Fellowship and Defense Advanced Research Projects Agency (DARPA) Young Faculty Award, and received the National Institutes of Health (NIH) Director’s New Innovator Award and Coulter Translational Research Award.