Conferences \ Lab-on-a-Chip, Microfluidics & Microarrays World Congress 2016 \ Agenda \ Abraham Lee |
Register | Login |
Chip-Scale Microfluidic Physiological Circulation SystemsTuesday, 27 September 2016 at 17:55 Add to Calendar ▼SELECTBIOenquiries@selectbiosciences.com There has been a recent surge in the development of microphysiological systems and organ-on-a-chip for drug screening and regenerative medicine. Over the years, drug screening has mostly been carried out on 2D monolayers in well plates and the drugs are not delivered through blood vessels as in vivo treatments. Through the advancement of microfluidics technologies, we have enabled the automation of biological fluids delivery through physiological vasculature networks that mimic the physiological circulation of the human body. The critical bottleneck is to engineer the microenvironment for the formation of vascularized 3D tissues and to also pump and perfuse the tissue vascular network for on-chip microcirculation. This in vitro model system can be used to screen cancer drugs by mimicking the delivery of the drugs through capillary blood vessels. On the other hand, microfluidics play an important role in the recent advances in liquid biopsy and the ability to specifically isolate and capture rare cells such as circulating tumor cells. These two technologies may go hand-in-hand to connect in vitro screening to in vivo screening with great potential in the development of personalized medicine. Chip-Scale Microfluidic Physiological Circulation SystemsTuesday, 27 September 2016 at 17:55 Add to Calendar ▼SELECTBIOenquiries@selectbiosciences.com There has been a recent surge in the development of microphysiological systems and organ-on-a-chip for drug screening and regenerative medicine. Over the years, drug screening has mostly been carried out on 2D monolayers in well plates and the drugs are not delivered through blood vessels as in vivo treatments. Through the advancement of microfluidics technologies, we have enabled the automation of biological fluids delivery through physiological vasculature networks that mimic the physiological circulation of the human body. The critical bottleneck is to engineer the microenvironment for the formation of vascularized 3D tissues and to also pump and perfuse the tissue vascular network for on-chip microcirculation. This in vitro model system can be used to screen cancer drugs by mimicking the delivery of the drugs through capillary blood vessels. On the other hand, microfluidics play an important role in the recent advances in liquid biopsy and the ability to specifically isolate and capture rare cells such as circulating tumor cells. These two technologies may go hand-in-hand to connect in vitro screening to in vivo screening with great potential in the development of personalized medicine. |